
D
Media Frame Types

Frame and Protocol ID Table . D-3

Frame Types . D-4
802.2 Type I and Type II . D-4

Packet Transmission . D-4
Packet Reception . D-5

Default Frame Types . D-5

Frame Formats . D-5
Ethernet 802.2 . D-6
Ethernet Raw 802.3 . D-6
Ethernet SNAP . D-7
Ethernet II . D-7
Token-Ring 802.2 . D-8
Token-Ring SNAP . D-9
FDDI 802.2 . D-10
FDDI SNAP . D-11
PCN2 802.2 . D-12
PCN2 SNAP . D-13
RX-Net . D-14

Short Packet . D-14
Long Packet . D-16
Exception Packet . D-18
RX-Net Split Flag . D-20

Version 1.00 D – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

D – 2 Version 1.00

Appendix D • Media Frame Types

Frame and Protocol ID Table

The table below shows the media frame types currently defined by Novell and the
corresponding Protocol ID number on IPX/SPX.

Frame
ID

Frame Type String Protocol
ID on

IPX/SPX

Description / Company

0 VIRTUAL_LAN 00h For use when no Media ID / MAC envelope is necessary.

1 LOCALTALK 00h The Apple LocalTalk media

2 ETHERNET_II 8137h Ethernet using a DEC Ethernet II envelope

3 ETHERNET_802.2 E0h Ethernet (802.3) using an 802.2 envelope

4 TOKEN-RING E0h Token-Ring (802.5) using an 802.2 envelope

5 ETHERNET_802.3 00h IPX 802.3 raw encapsulation

6 802.4 Token-passing bus envelope

7 NOVELL_PCN2 1111h Novell’s IBM PC Network II envelope

8 GNET E0h Gateway’s GNET media envelope

9 PRONET-10 Proteon’s Pronet I/O media envelope

10 ETHERNET_SNAP 8137h Ethernet (802.3) using an 802.2 envelope with SNAP

11 TOKEN-RING_SNAP 8137h Token-Ring (802.5) using an 802.2 envelope with SNAP

12 LANPAC_II Racore’s media envelope

13 ISDN Integrated Services Digital Network

(Not available)

14 NOVELL_RX-NET FAh Novell’s RX-Net envelope

15 IBM_PCN2_802.2 E0h IBM PCN2 using 802.2 envelope

16 IBM_PCN2_SNAP 8137h IBM PCN2 using 802.2 with SNAP envelope

17 OMNINET/4 Corvus frame envelope

18 3270_COAXA Harris Adacom frame envelope

19 IP IP Tunnel Frame envelope

20 FDDI_802.2 E0h FDDI using an 802.2 envelope

21 IVDLAN_802.9 Commtex, Inc. frame envelope

22 DATACO_OSI Dataco frame envelope

23 FDDI_SNAP 8137h FDDI using 802.2 SNAP envelope

24 IBM_SDLC SDLC tunnel envelope

25 PCO_FDDITP PC Office frame envelope

26 WAIDNET Hypercommunications

27 SLIP Novell frame envelope

28 PPP Novell frame envelope

29 RANGELAN Proxim

30 X.25 X.25

31 Frame_Relay Novell

32 IWI_BUS-NET_SNAP Integrated Workstations

33 SNA_LINKS Novell

Version 1.00 D – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Frame Types

This section provides frame related information and illustrates several
of the different frame formats.

802.2 Type I and Type II

802.2 packets may be Type I (one control byte) or Type II (two control
bytes). Previously 802.2 Type II packets were handled by placing the
additional control byte in the first byte of the data field. This is no
longer the case. The ProtocolID and the DriverWorkspace fields of the
ECB now contain information required to distinguish 802.2 Type I and
Type II packets.

Note: Drivers written using the MSM and TSM Modules do not need to be
concerned with the 802.2 frame Type I and II situation. These support
modules handle the identification on incoming packets and build the
headers for outgoing packets.

Packet Transmission

For packets to be transmitted, the ProtocolID field of the ECB contains
the information necessary to build the header for the correct 802.2
packet type. The table below summarizes relationship between the
ProtocolID contents and the header.

ProtocolID Bytes 802.2 Header Bytes

0 1 2 3 4 5 1 2 3 4

00 00 00 00 00 DSAP DSAP DSAP 03

02 00 00 DSAP SSAP Ctrl0 DSAP SSAP Ctrl0

03 00 DSAP SSAP Ctrl0 Ctrl1 DSAP SSAP Ctrl0 Ctrl1

D – 4 Version 1.00

Appendix D • Media Frame Types

Packet Reception

In received packets, the Ctrl0 field indicates whether the packet is a
Type I or Type II packet. The following table shows the possible Ctrl0
values and action that must be taken in filling in the receive ECB.

Ctrl0 Bits Action

0 1

0 0 The packet has an 802.2 Type II header, set byte 1 of

DriverWorkSpace to 2. Make sure PacketOffset points past

the Ctrl1 field of the header.

0 1 The packet has an 802.2 Type II header, set byte 1 of

DriverWorkSpace to 2. Make sure PacketOffset points past

the Ctrl1 field of the header.

1 0 The packet has an 802.2 Type II header, set byte 1 of

DriverWorkSpace to 2. Make sure PacketOffset points past

the Ctrl1 field of the header.

1 1 The packet has an 802.2 Type I header, set byte 1 of

DriverWorkSpace to 1.

Default Frame Types

The following frame types should be supported for the standard
topologies when running on the NetWare v4.x operating system.
Default frame types are shown in bold. This list is for the
standardized media types of Ethernet, Token-Ring, FDDI, PCN2, and
RX-Net. Proprietary frame types are not included here.

Ethernet Token-Ring FDDI PCN2 RX-Net

Ethernet 802.2

Ethernet Snap

Ethernet 802.3

Ethernet II

Token-Ring 802.2

Token-Ring Snap

FDDI 802.2

FDDI Snap

PCN2 802.2

PCN2 Snap

(short)

(long)

(exception)

Frame Formats

The remainder of this appendix illustrates several of the standard
frame formats. The white fields in the frame diagrams on the following
pages are used to determine the frame type.

Version 1.00 D – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Ethernet 802.2

In Ethernet 802.2 packets, the FrameLength field contains a value less
than or equal to 1500 (decimal). If the next three bytes (DSAP, SSAP,
and Control) do not contain the Ethernet SNAP byte sequence: AAh,

AAh, 03h, the packet is Ethernet 802.2.

DestinationAddress
SourceAddress

FrameLength
DSAP
SSAP

Control

802.3 Header

802.2 Header
 1 or 2 control bytes

Data

Protocol Header

Information

Figure D.1 Ethernet 802.2 Frame Type

Ethernet Raw 802.3

In Ethernet Raw 802.3 packets, the FrameLength field contains a value
less than or equal to 1500 (decimal). In addition, the first two bytes of
the Data area must contain the values FFh and FFh.

DestinationAddress
SourceAddress

FrameLength
802.3 Header

Information

Data

Protocol Header

FF FF

Figure D.2 Ethernet Raw 802.3 Frame Type

D – 6 Version 1.00

Appendix D • Media Frame Types

Ethernet SNAP

In Ethernet SNAP packets, the FrameLength field contains a value less
than or equal to 1500 (decimal). In addition, the next three bytes
(DSAP, SSAP, and Control) will contain the values AAh, AAh, and 03h
respectively.

DestinationAddress
SourceAddress

FrameLength
DSAP
SSAP

Control
ProtocolIdentification

Data

802.3 Header

SNAP Header

Protocol Header

Information

AA

03

AA

Figure D.3 Ethernet SNAP Frame Type

Ethernet II

In Ethernet II packets, the FrameType field will contain a value greater
than 1500 (decimal).

DestinationAddress
SourceAddress

FrameType
Ethernet II Header

Information

Data

Protocol Header

Figure D.4 Ethernet II Frame Type

Version 1.00 D – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Token-Ring 802.2

In Token-Ring 802.2 packets, the DSAP, SSAP, and Control fields
will not contain the byte sequence: AAh, AAh, 03h. See the
description of 802.2 Type I and Type II packet handling at the
beginning of this section.

AccessControl
FrameControl

DestinationAddress
SourceAddress

RouteControlBroadcast/Length
RouteControlDirection

RouteDesignator1
RouteDesignator2

 .
 .
 .
 .
 .
 .

DSAP
SSAP

Control

Routing Information

Routing Control Field

802.5 Header

802.2 Header
 1 or 2 control bytes

Data

Protocol Header

Data

Figure D.5 Token-Ring 802.2 Frame Type

D – 8 Version 1.00

Appendix D • Media Frame Types

Token-Ring SNAP

In Token-Ring SNAP packets, the DSAP, SSAP, and Control fields will
contain the byte sequence: AAh, AAh, 03h

AccessControl
FrameControl

DestinationAddress
SourceAddress

RouteControlBroadcast/Length
RouteControlDirection

RouteDesignator1
RouteDesignator2

 .
 .
 .
 .
 .
 .

DSAP
SSAP

Control
ProtocolIdentification

Data

Routing Information

Routing Control Field

802.5 Header

SNAP Header

Protocol Header

Information

AA

03

AA

Figure D.6 Token-Ring SNAP Frame Type

Version 1.00 D – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

FDDI 802.2

In FDDI 802.2 packets, the DSAP, SSAP, and Control fields will not

contain the byte sequence: AAh, AAh, 03h. See the description of 802.2
Type I and Type II packet handling at the beginning of this section.

FrameControl
DestinationAddress

SourceAddress
RouteControlBroadcast/Length

RouteControlDirection
RouteDesignator1
RouteDesignator2

 .
 .
 .
 .
 .
 .

DSAP
SSAP

Control

Routing Information

Routing Control Field

FDDI MAC Header

802.2 Header
 1 or 2 control bytes

Data

Protocol Header

Data

Packet Header

Figure D.7 FDDI 802.2 Frame Type

D – 10 Version 1.00

Appendix D • Media Frame Types

FDDI SNAP

In FDDI SNAP packets, the DSAP, SSAP, and Control fields will
contain the byte sequence: AAh, AAh, 03h

FrameControl
DestinationAddress

SourceAddress
RouteControlBroadcast/Length

RouteControlDirection
RouteDesignator1
RouteDesignator2

 .
 .
 .
 .
 .
 .

DSAP
SSAP

Control
ProtocolIdentification

Data

Routing Information

Routing Control Field

FDDI MAC Header

SNAP Header

Protocol Header

Data

AA

03

AA

Packet Header

Figure D.8 FDDI SNAP Frame Type

Version 1.00 D – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

PCN2 802.2

In PCN2 802.2 packets, the DSAP, SSAP, and Control fields will not

contain the byte sequence: AAh, AAh, 03h. See the description of 802.2
Type I and Type II packet handling at the beginning of this section.

DestinationAddress
SourceAddress

FrameLength
RouteControlBroadcast/Length

RouteControlDirection
RouteDesignator1
RouteDesignator2

.

.

.

.

.

.
DSAP
SSAP

Control
Data

PCN2 Header

802.2 Header

Protocol Header

Information

0 0

Routing Information

Routing Control Field

Figure D.9 PCN2 802.2 Frame Type

D – 12 Version 1.00

Appendix D • Media Frame Types

PCN2 SNAP

In PCN2 SNAP packets, the DSAP, SSAP, and Control fields will
contain the byte sequence: AAh, AAh, 03h

DestinationAddress
SourceAddress

FrameLength
RouteControlBroadcast/Length

RouteControlDirection
RouteDesignator1
RouteDesignator2

.

.

.

.

.

.
DSAP
SSAP

Control
ProtocolIdentification

Data

PCN2 Header

SNAP Header

Protocol Header

Information

0 0

AA

03

AA

Routing Information

Routing Control Field

Figure D.10 PCN2 SNAP Frame Type

Version 1.00 D – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

RX-Net

RX-Net drivers must recognize and handle three packet types:

• Short
• Long
• Exception

Novell RX-Net drivers do not use logical boards to handle these
different packet types. Instead, they examine the packet to determine
the type and fill out the RCB accordingly.

Each packet type has a three byte RX-Net header that includes the
source and destination addresses and an offset byte that points to the
packet data and also indicates the data length. It is the length of the
data, in bytes, that determines the packet type as shown below:

0 - 249 short packet or fragment
250 - 252 exception packet
253 - 504 long packet or fragment

Each packet type also contains a ProtocolType byte that contains the
unique number Datapoint has assigned to the adapter manufacturer to
identify the company’s packets on the wire. For example, Novell
packets use FAh, AppleTalk packets use DDh.

Short Packet

In short packets, the third byte of the packet (ByteOffset) will contain
a non-zero value. This packet format is for a single packet or fragment
containing 0 to 249 bytes of data. The fields indicated in Figure D.11
are defined here.

Source Address - This is the single byte address of the sending card
inserted by the RX-Net hardware.

Destination Address - This is the single byte address of the destination
card.

Byte Offset - This is a single byte entry, the value of which is
calculated as follows:

Byte Offset = 256 - (N + 4)

where N represents the number of data bytes, 4 represents the
information bytes defined below, and 256 represents the length of the
RX-Net short buffer.

D – 14 Version 1.00

Appendix D • Media Frame Types

Protocol Type - This is the single byte type number issued by

Datapoint.

Split Flag - This is a single byte entry identifying which fragment of a

total data packet is contained within this packet. Refer to Figure D.14
in the Split Flag description for more information on this byte.

Sequence Number - This is a word value (low-high) set equal to a

counter kept by the sending machine. All fragments of a particular
data packet must have the same sequence number. This number is
incremented after all fragments of a data packet have been transmitted.
When the sequence number has reached FFFFh, it should be
incremented to 0000h.

N Bytes of Data - This is the actual data.

SourceAddress
DestinationAddress

ByteOffset

Unused

ProtocolType
SplitFlag

PacketSequenceNumber
Data

Information (0-249 bytes)

Protocol Header

RX-Net Header

Figure D.11 RX-Net Short Packet Type

Version 1.00 D – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Long Packet

In long packets, the third byte of the packet (LongPacketFlag) will be 0,
and the byte after the ProtocolType byte (SplitFlag) will not be FFh.
This packet format is for a single packet or fragment containing 253 to
504 bytes of data. The fields are defined following the figure:

SourceAddress
DestinationAddress

LongPacketFlag
ByteOffset

Unused

ProtocolType
SplitFlag

PacketSequenceNumber
Data

Information (253-504 bytes)

Protocol Header

RX-Net Header
0

Figure D.12 RX-Net Long Packet Type

Source Address - This is the single byte address of the sending card

inserted by the RX-Net hardware.

Destination Address - This is the single byte address of the destination

card.

Long Packet Flag - This is a single byte of 00h indicating that this

packet is a long packet.

Byte Offset - This is a single byte entry, the value of which is

calculated as follows:

Byte Offset = 512 - (N + 4)

where N represents the number of data bytes, 4 represents the
information bytes defined below, and 512 represents the length of the
RX-Net long buffer.

D – 16 Version 1.00

Appendix D • Media Frame Types

Protocol Type - This is the single byte type number issued by

Datapoint.

Split Flag - This is a single byte entry identifying which fragment of a

total data packet is contained within this packet. Refer to Figure D.14
in the Split Flag description for more information on this byte.

Sequence Number - This is a word value (low-high) set equal to a

counter kept by the sending machine. All fragments of a particular
data packet must have the same sequence number. This number is
incremented after all fragments of a data packet have been transmitted.
When the sequence number has reached FFFFh, it should be
incremented to 0000h.

N Bytes of Data - This is the actual data.

Version 1.00 D – 17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Exception Packet

In exception packets, the third byte of the packet (LongPacketFlag) will
be 0, and the byte after the ProtocolType byte (Pad2-SplitFlag) will be
FFh. This packet format is for a single packet or fragment containing
250 to 252 bytes of data. The format is similar to the long packet, but
because of the single byte representing the byte offset, these lengths
require that padding be added to the data packet. The fields are
defined following the figure.

SourceAddress
DestinationAddress

LongPacketFlag
ByteOffset

Unused

Pad1-ProtocolType
Pad2-SplitFlag

Pad3
Pad4

ProtocolType
SplitFlag

PacketSequenceNumber
Data

Information (250-252 bytes)

Protocol Header

RX-Net Header
0

FF

Figure D.13 RX-Net Exception Packet Type

Source Address - This is the single byte address of the sending card

inserted by the RX-Net hardware.

Destination Address - This is the single byte address of the destination

card.

Long Packet Flag - This is a single byte of 00h indicating that this

packet is a long packet.

D – 18 Version 1.00

Appendix D • Media Frame Types

Byte Offset - This is a single byte entry, the value of which is

calculated as follows:

Byte Offset = 512 - (N + 8)

where N represents the number of data bytes, 8 represents the bytes
defined below including the 4 padding bytes, and 512 represents the
length of the RX-Net long buffer.

Pad1-Protocol Type - This is the single byte type number issued by

Datapoint.

Pad2-Split Flag - This is a single byte entry, FFh, identifying this

packet as an exception packet. Refer to Figure D.14 in the Split Flag
description for more information on this byte.

Pad3-Padding Byte - This is a single byte of FFh.

Pad4-Padding Byte - This is a single byte of FFh.

Protocol Type - This is the single byte type number issued by

Datapoint.

Split Flag - This is a single byte entry identifying which fragment of a

total data packet is contained within this packet (Refer to Figure D.14).

Sequence Number - This is a word value (low-high) set equal to a

counter kept by the sending machine. All fragments of a particular
data packet must have the same sequence number. This number is
incremented after all fragments of a data packet have been transmitted.
When the word value has reached FFFFh, it should be incremented to
0000h.

N Bytes of Data - This is the actual data.

Version 1.00 D – 19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

RX-Net Split Flag

Splitting data into multiple packets allows data sizes to exceed the limit
set by the physical network. The RX-Net SplitFlag provides a method
for tracking and reassembling the packets that make up a frame.

The SplitFlag allows data to be split between multiple packets. This
method allows a maximum of 120 fragments per frame, which yields a
maximum of 60,480 bytes per frame:

(120 frags/frame) x (504 bytes/frags) = 60,480 bytes/frame

When data is fragmented, the SplitFlag byte contains two flags: the
more flag and a fragment number. The more flag is the least significant
bit. The seven most significant bits contain the fragment number.
Figure D.14 illustrates the SplitFlag byte.

1

0

(total packets - 2)

(total packets - 1)

1st Packet's Split Flag

Subsequent Packet's Split Flag

LSB

LSB

Figure D.14 Split Frame Flags

First Fragment - The first fragment of a split data frame has its more

flag set to indicate that there are more fragments to follow. The
fragment number indicates the total number of fragments minus two.

Subsequent Fragments - The more flag is zero for all remaining

fragments. The fragment number indicates the current fragment
number minus one.

D – 20 Version 1.00

Appendix D • Media Frame Types

Example 1

A complete, unfragmented packet has a SplitFlag value of 00h.

Example 2

If packet data is split into two fragments, the SplitFlag values for each
fragment are:

Fragment 1 0000000 1 = 01h
Fragment 2 0000001 0 = 02h

The first packet is prepared with the SplitFlag byte’s fragment number
set to 0000000 (2 total fragments - 2), and the more flag is set to
indicate more fragments to come. The resulting flag value is 01h.

When the second packet is prepared, the fragment number is set to
0000001 (current fragment number - 1), and the more flag is set to 0,
indicating this is the second of two fragments. The resulting SplitFlag
byte value is 02h.

Example 3

If packet data is split into four fragments, the SplitFlag byte values are:

Fragment 1 0000010 1 = 05h
Fragment 2 0000001 0 = 02h
Fragment 3 0000010 0 = 04h
Fragment 4 0000011 0 = 06h

The last fragment in a series has a SplitFlag value equal to the first
fragment’s SplitFlag byte value plus one. The TSM can use this
information to determine when the last fragment of data has arrived.
Calculating the number of fragments that make a complete frame
should not seriously affect the performance of the driver.

Note: Split flag codes from F0h-FEh are reserved for future use.

Version 1.00 D – 21

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

D – 22 Version 1.00

